Ruthenium-catalysed double *trans*-hydrosilylation of 1,4-diarylbuta-1,3-diynes leading to 2,5-diarylsiloles[†]‡

Takanori Matsuda, Sho Kadowaki and Masahiro Murakami*

Received (in Cambridge, UK) 7th March 2007, Accepted 23rd March 2007 First published as an Advance Article on the web 5th April 2007 DOI: 10.1039/b703397d

Dihydrosilanes undergo double *trans*-hydrosilylation with 1,4diarylbuta-1,3-diynes in the presence of a cationic ruthenium catalyst to afford 2,5-diarylsiloles: in particular, 9-silafluorene is a good hydrosilylating agent to produce spiro-type siloles in good yield.

Studies on the synthesis of heteroles and metalloles continue to be of great importance owing to their unique photophysical and electronic properties.¹ 2,5-Disubstituted heteroles of group 14–16 elements can be synthesised by [4 + 1]-type annulation reactions of 1,3-diynes with appropriate group 14–16 element compounds (eqn (1)).² For example, a thermal reaction of hexa-2,4-diyne with dibutyltin dihydride affords the corresponding stannole.^{2g} However, no [4 + 1]-type annulation reaction of 1,3diynes producing siloles has been reported. Ever increasing interest in silicon-based σ - and π -conjugated molecules³ prompted us to explore an efficient process for the preparation of siloles from 1,3diynes. We herein wish to report a new synthesis of 2,5-diarylsiloles by means of catalytic double hydrosilylation.⁴

$$\mathsf{R} \xrightarrow{\qquad} \mathsf{R} \xrightarrow{\qquad} \mathsf{R} \xrightarrow{\qquad} \mathsf{R} \xrightarrow{\qquad} \mathsf{R} \xrightarrow{\qquad} \mathsf{A} = \mathsf{S}, \mathsf{Se}, \mathsf{Te}, \mathsf{NBn}, \quad (1)$$

Hydrosilylation of alkynes is catalysed by various transition metal complexes, and in most cases, *cis* adducts are formed.⁵ However, a synthesis of silole derivatives by hydrosilylation of 1,3diynes necessitates a trans addition process. Trost et al. reported that ruthenium complex, [Cp*Ru(MeCN)₃]PF₆ (1), catalyses transhydrosilylation of alkynes.⁶ We tried to apply this catalyst to the reaction of 1,3-divnes and dihydrosilanes (Table 1). No reaction occurred when 1,4-diphenylbuta-1,3-diyne (2a) was treated with Et₂SiH₂ (3a, 3 equiv.) in the presence of 1 (20 mol%) in 1,2dichloroethane (entry 1). Only a trace amount of silole was obtained when PhMeSiH₂ (3b) was used (entry 2). Gratifyingly, the desired double hydrosilylation of 2a occurred with Ph₂SiH₂ (3c) to afford 1,1,2,5-tetraphenylsilole (4ac) in 51% yield (entry 3).^{7,8} 9-Silafluorene $(3d)^9$ was found to be a better hydrosilvlating agent to produce spiro-type silole 4ad in 79% yield (entry 4).¹⁰ The reaction proceeded efficiently to give **4ad** in 75% yield even with 1.5 equiv. of 3d (entry 5). The yield of 4ad decreased to 58% with 10 mol% of the catalyst (entry 6).

PhPh 2a + - R ₂ SiH ₂ 2a d		<i>cat.</i> [Cp*Ru(MeCN) ₃]PF ₆ (1) CICH ₂ CH ₂ Cl, rt, 10 h			Ph Si R2				
a : Si Et	b: Si	c: Si Ph	2 d:	Si Si	4aa-	-4ad			
	Dihydrosilane				Silole				
Entry	3 (R ₂ SiH ₂)	Equ	iv. mol%	6 Ru = 4	Y	ield ^b			
1 2 3 4 5 6 ° Diuma	$\begin{array}{l} \textbf{3a} \ (Et_2SiH_2) \\ \textbf{3b} \ (PhMeSiH_2) \\ \textbf{3c} \ (Ph_2SiH_2) \\ \textbf{3d} \ (9\text{-silafluorene} \\ \textbf{3d} \\ \textbf{3d} \\ \textbf{3d} \end{array}$	3.0 3.0 3.0 1.5 3.0	20 20 20 20 20 20 10	4 4 4 4 4 4 4	aa 09 ab tr ac 50 ad 79 ad 75 ad 58	% 'ace 1% 9% 5% 8%			
"Divide $2a$ and silane 3 were reacted in 1,2-dichloroethane at rt for 10 h in the presence of 1. ^b Isolated yield by preparative TLC.									

Chloro(phenyl)silane (3e) also successfully participated in the reaction with 2a to produce 1-chlorosilole derivative 4ae (Scheme 1). The following treatment with methyllithium afforded 1-methyl-1-phenylsilole 4ab in 61% yield, which was difficult to obtain through a direct double hydrosilylation process using 3b. Ethynylation of 4ae with HC=CMgBr gave ethynylsilole 5 (40%).¹¹

Thus, the double hydrosilylation of 1,3-diynes provides a new synthetic route to 2,5-diarylsiloles. Next, a wide variety of 1,3-diynes were subjected to the double *trans*-hydrosilylation reaction with 3d (Table 2).§ Some results obtained with 3c are included therein.

Scheme 1 Reagents and conditions: ^{*a*} MeLi, Et₂O, -78 °C ~ rt, ^{*b*} HC=CMgBr, THF, 0 ~ 50 °C.

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan.

E-mail: murakami@sbchem.kyoto-u.ac.jp; Fax: +81 (75) 383-2748 † Electronic supplementary information (ESI) available: Experimental procedures and characterization data for new compounds. See DOI: 10.1039/b703397d

[‡] This paper is dedicated to the late Professor Yoshihiko Ito in appreciation of his inspiring mentorship.

Table 2 Ruthenium-catalysed double *trans*-hydrosilylation of 1,3diynes **2b–n** with 9-silafluorene $(3d)^{a}$

^{*a*} Reaction conditions: **2** (1 equiv.), **3d** (3 equiv.), **1** (20 mol%), 1,2dichloroethane, rt, 10 h. ^{*b*} Isolated yield. ^{*c*} Yields in parentheses are results with Ph₂SiH₂ (**3c**). ^{*d*} pin = pinacolato (–OCMe₂CMe₂O–).

2-Naphthyl-substituted 1,3-divne 2b afforded the corresponding silole 4bd in 59% yield (entry 1), whereas 1-naphthyl-substituted 1.3-divne failed to react with 3d presumably due to steric reasons. 1,3-Diynes (2c and 2d) having electron-donating groups on the para positions of the phenyl rings provided the siloles (4cd and 4dd) in good yields (entries 2 and 3). In contrast, introduction of electron-withdrawing acetyl groups significantly retarded the reaction (entry 4). Various heteroatom functionalities including halogens, silicon, and boron on the phenyl rings survived unscathed under the reaction conditions (entries 5-8). Other sp² carbon-substituted diynes like bis(3-thienyl)butadiyne 2j and dicyclohexenylbutadiyne 2k worked well (entries 9 and 10). On the other hand, hexa-2,4-divne (R = Me) failed to react with 2d, and 1,4-bis(trimethylsilyl)buta-1,3-divne ($R = SiMe_3$) afforded a complex mixture of products. These results suggest that 1,3-diynes with the 1- and 4-carbons being connected to sp² carbons are suitable substrates for the present silole forming reaction. The reaction of unsymmetrical 1,3-diynes was also examined. 1-Phenyl-4-(4-vinylphenyl)buta-1,3-diyne (21) furnished silole 41d with the vinyl group remaining intact (entry 11). Siloles 4md (R = OMe) and 4nd ($R = CF_3$) having electronically biased aryl groups were produced by hydrosilylation of the corresponding unsymmetrical 1,3-divnes 2m and 2n (entries 12 and 13).

The incorporation of silole cores into a π -conjugated backbone is of particular interest because silole-containing oligomers and polymers have been regarded as promising electron-transporting

materials. Thus, the present reaction was applied to the synthesis of extended π -conjugated silole derivatives. *m*-Bis(diynyl)benzene **6** that possess two 1,3-diyne moieties reacted with two molecules of silane **3d** to provide *m*-phenylenebissilole **7** (Scheme 2).

As another approach to extend silole-containg π -conjugation, we carried out polymerization by a cross-coupling reaction. Suzuki–Miyaura coupling of diborylsilole **4id** with 1,4-dibromobenzene **8** in the presence of a palladium catalyst furnished alternating copolymer **9** in 99% yield (Scheme 3).

Selected photophysical and thermal data for the produced siloles are shown in Table 3. Tetraphenylsilole **4ac** exhibits its absorption maximum at 382 nm and fluorescence maximum at 467 nm. Substitution of the –SiPh₂– moiety with silafluorenylene causes red shifts of both the absorption and fluorescence maxima. Siloles **4ac** and **4gd** have high quantum efficiencies ($\Phi_{\rm F}$) of 0.64 and 0.65, respectively. Introduction of the spiro linkage increases the glass transition temperature ($T_{\rm g}$) and melting point ($T_{\rm m}$); **4hd** has $T_{\rm g}$ of 90 °C and **4jd** has $T_{\rm m}$ of 233 °C.

The production of 2,5-diarylsiloles from 1,3-diynes and dihydrosilanes can be accounted for by assuming that the initial ruthenium-catalysed *trans*-hydrosilylation is followed by the second intramolecular hydrosilylation in a *trans* fashion (Scheme 4).¹² In order to support this assumption, 2-alkynylphenylsilane **10** was prepared and subjected to the reaction conditions. Intramolecular hydrosilylation occurred in a *trans* fashion to give 1-silaindene **11** in 72% yield (eqn (2)).¹³ This experiment corroborates the successive double hydrosilylation mechanism.

Table 3 Photophysical and thermal properties of siloles

Silole	UV-vis ^a		fluorescence ^b			
	$\lambda_{abs} (nm)$	log <i>e</i>	$\lambda_{\rm em} \ ({\rm nm})$	$\Phi_{ m F}$	$T_{\rm g}$ (°C)	$T_{\rm m}$ (°C)
4ac	382	4.26	467	0.64	35	169
4ad	391	4.12	490	0.35	65	197
4gd	390	4.24	488	0.65	52	157
4hd	401	4.34	500	0.31	90	203
4id	398	3.95	493	0.26	81	233

^{*a*} Measured in CHCl₃. ^{*b*} Measured in hexane. Determined with reference to quinine sulfate in 0.1 N H_2SO_4 and anthracene in EtOH (excited at 250 nm).

In summary, we have discovered a new double *trans*hydrosilylation reaction of 1,3-diynes catalysed by a cationic ruthenium complex. The reaction enabled the rapid assembly of 2,5-diarylsiloles from readily available starting materials under mild conditions.

We thank the Japan Society for the Promotion of Science for the fellowship support to S. K.

Notes and references

§ General procedure: To a solution of [Cp*Ru(MeCN)₃]PF₆ (1, 30.3 mg, 0.060 mmol) in 1,2-dichloroethane (1.5 mL) was added a solution of 1,4-diphenylbuta-1,3-diyne (2a, 60.7 mg, 0.30 mmol) and 9-silafluorene (3d, 164.1 mg, 0.90 mmol) in 1,2-dichloroethane (1.5 mL). After being stirred

under an argon atmosphere for 10 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by thin-layer chromatography (hexane:AcOEt = 10 : 1) to give 2',5'-diphenylspiro[9-silafluorene-9,1'-silole] (**4ad**, 91.4 mg, 79%).

- (a) U. Salzner, J. B. Lagowski, P. G. Pickup and R. A. Poirier, *Synth. Met.*, 1998, **96**, 177; (b) D. Delaere, M. T. Nguyen and L. G. Vanquickenborne, *Phys. Chem. Chem. Phys.*, 2002, **4**, 1522; (c) Y. Narita, I. Hagiri, N. Takahashi and K. Takeda, *Jpn. J. Appl. Phys.*, 2004, **43**, 4248.
- For syntheses of heteroles from 1,3-diynes, see: (a) K. E. Schulte, J. Reisch and L. Hoerner, *Chem. Ber.*, 1962, **95**, 1943; (b) R. F. Curtis, S. N. Hasnain and J. A. Taylor, *Chem. Commun.*, 1968, 365; (c) V. A. Potapov, N. K. Gusarova, S. Amosova, A. S. Kashik and B. A. Trofimov, *Sulfur Lett.*, 1985, **4**, 13; (d) J. Reisch and K. E. Schulte, *Angew. Chem.*, 1961, **73**, 241; (e) G. Märkl and R. Potthast, *Angew. Chem.*, 1967, **79**, 58; (f) G. Märkl, H. Hauptmann and A. Merz, *J. Organomet. Chem.*, 1983, **249**, 335; (g) A. J. Ashe, III and T. R. Diephouse, *J. Organomet. Chem.*, 1980, **202**, C95.
- 3 For a leading reference, see: S. Yamaguchi and K. Tamao, J. Chem. Soc., Dalton Trans., 1998, 3693.
- 4 We recently reported an iridium-catalysed [2 + 2 + 2] cycloaddition reaction *en route* to 9-silafluorene derivatives: T. Matsuda, S. Kadowaki, T. Goya and M. Murakami, *Org. Lett.*, 2007, **9**, 133.
- 5 I. Ojima, Z. Li and J. Zhu, in *The Chemistry of Organic Silicon Compounds*, ed. Z. Rappoport and Y. Apeloig, John Wiley & Sons, New York, 1998, vol. 2, ch. 29.
- 6 (a) B. M. Trost and Z. T. Ball, J. Am. Chem. Soc., 2001, 123, 12726; (b)
 B. M. Trost and Z. T. Ball, J. Am. Chem. Soc., 2005, 127, 17644 and references therein.
- 7 For other preparative methods of 2,5-diarylsiloles, see: (a) W. H. Atwell, D. R. Weyenberg and H. Gilman, J. Org. Chem., 1971, 32, 885; (b) T. J. Barton, W. D. Wulff, E. V. Arnold and J. Clardy, J. Am. Chem. Soc., 1979, 101, 2733; (c) S. Yamaguchi, R.-Z. Jin, K. Tamao and F. Sato, J. Org. Chem., 1998, 63, 10060; (d) M. Katkevics, S. Yamaguchi, A. Toshimitsu and K. Tamao, Organometallics, 1998, 17, 5796.
- 8 When deuterated silane $3c_{-d_2}$ was used, the deuterium atoms were incorporated at the 3- and 4-positions of the silole in 93% D.
- 9 J. Y. Corey, C. S. John, M. C. Ohmsted and L. S. Chang, J. Organomet. Chem., 1986, 304, 93.
- Other related cationic ruthenium complexes afforded inferior results: [CpRu(MeCN)₃]PF₆: 8%; [Cp*Ru(MeCN)₃]OTf: 75%.
- 11 1,2,5-Triphenylsilole (30%) was also obtained as a byproduct.
- 12 For a DFT calculation of the ruthenium-catalysed *trans*-hydrosilylation, see: L. W. Chung, Y.-D. Wu, B. M. Trost and Z. T. Ball, *J. Am. Chem. Soc.*, 2003, **125**, 11578.
- 13 G. Märkl and K.-P. Berr, Tetrahedron Lett., 1992, 33, 1601.